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Synchronizing broadband chaotic systems to narrow-band signals

T. L. Carroll and G. A. Johnson
Code 6343, U.S. Naval Research Laboratory, Washington, D.C. 20375
(Received 9 July 1997

We show that it is possible to take a signal from a chaotic drive system, pass it through a bandpass filter, and
still use it to synchronize a chaotic response system. Narrow-band chaotic signals should be less sensitive to
channel distortion and noise, so filtering should be useful for chaotic communications schemes.
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PACS numbds): 05.45+b

The application of synchronized chaotic systems to comsponse system in the same way, then multiply the difference
munications has become a popular research {dpi@]. Un-  (g{ —g;) by the vectorb and add it to the response vector
fortunately, the broadband properties that make chaotic sigield. We find that if the response systdincluding G) has
nals interesting also make the signals difficult to use inall Lyapunov exponents less than zero, the response will syn-
communications schemes. When real signals are transmitteghronize to the drive. In this work, we use bandpass filters
through some mediunithe channegl the properties of the for the dynamical systers, although other dynamical sys-
medium usually vary with frequency. Broad-band signalstems may work. A bandpass filter passes only a certain band
such as chaos, are greatly distorted by transmission througha frequencies from the input signal.
real channel. In previous work 14,15, we synchronized circuits where

There has been some work on how to adapt chaotic rethe dynamical systerf(x) was a nonautonomougeriodi-
ceivers to correct for distortion due to transmission through &ally forced system and the dynamical systéncontained
channe[9-12. As an alternate approach, we ask how muchpandstop filters that removed the forcing frequency and the
information about the chaotic drive system is necessary ifirst several harmonics. The response system had its own
order to synchronize the receiver. One may be able to avoi@eriodic forcing source which replaced the part of the signal
some of the channel distortion problems by sending only thigijtered out byG.
necessary information. We see in the work presented here \When we used filters with nonautonomous chaotic cir-
that one may reduce the amount of information about theuits, we were removing only a small amount of information
chaotic drive system by filtering the drive signal through aahout the chaotic drive system. We had a copy of the forcing
bandpass filter and still synchronize the response system. Wanction at our response system, so all that was lost was
do not need the full chaotic signal to synchronize the reinformation on the phase of the forcing signal. In the present
sponse system. work, we will use bandpass filters with autonomous chaotic

We have shown before that one may synchronize a chasystems. We are now removing a large amount of informa-
otic response system to a signal that is a nonlinear functiofion about the chaotic drive system. Causal filtessch as
of signals in the chaotic drive systeh3] or even a filtered  our bandpass filteysalso change the dynamics of a signal
version of a signal from the drive systeit4,15 (when the  [17]. There should be some minimum amount of information
chaotic systems were nonautonomot®enget al.[16] have  needed to synchronize a response system to a drive system.

shown a linear version of the result in R¢L3]; one may  As a numerical example, we link two Lorenz systeit8]
synchronize a chaotic response system to a linear combinghrough a bandpass filter. For our Lorenz example, the vector
tion of signals from the drive system. field F was given bydx, /dt=16(X,—X1), dX,/dt=—X X3
In this paper, we will look at drive-response systems of+45.9%, —x,, anddxs/dt=x;x,—4x5. The scalau was
the form u=k;x; +kyX,+ksxs. The filter G was described by
dX—F(X) dx,—F(x')+b( g dg, 2 1 1 1 ) 1 ) du
dt Tt 9i=9%) at - RC YT 2R,C) \RC RC)2T\RC) at
u=k-x, u'=k-x’, (1)
dg dg’ . dg,
gt Clauw, ot - Gghuh, gt 9 )

wherex is the drive system state vectot, is the response At the response system, we took the differenag (

system state vectok and b are constant vectors) is a  —(g,), multiplied by a vectob=(b,,b,,b3) and added the
scalar,G is a dynamical system, amf is a signal taken from result to the response vector field.

the dynamical syster®. We make a linear combinatianof Equation (2) represents a second-order bandpass filter
signals from the drive systeif(x) and drive the dynamical [19]. The center frequency, is passed with a gain of 1,
systemG with u. We then take a signal fro®, such ag;, while other frequencies are attenuated by an amount that

and transmit it to the response system. We set up the réncreases as they become farther frd;m The constants
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FIG. 1. (a) Power spectrun for the unfiltered signali from the FIG. 3. (a) Power spectrur for the unfiltered signal from the
numerical Lorenz systenib) Power spectrun for the filtered  piecewise linear Resler circuit.(b) Power spectrun$ for the fil-
signalg, from the numerical Lorenz system. tered signaly; from the piecewise linear Rasler circuit. Frequen-

cies outside the pass band have been reduced by 15— fdBtor
of 30—100 in power

wereC=1, R;=3.183, andR,=6.366.R; was used to vary

the center frequency of the filter, so for a center frequency oparameters, the response system was stable for valifgs of

fo, Ra=Ry/[—1+4(nf)?RiR,]. For these parameters, ranging from about 1 to about 9.

the Q factor of the filter was 2Gthe Q factor is the center  we also built a set of electronic circuits that could be

frequency f. divided by the bandwidth The center fre- synchronized through a filter. Our drive and response circuits

quencyf of the filter was varied between 0.1 and 10. Nu-were piecewise linear circuit§21] whose attractors re-

merical integration was carried out by a fourth-order Rungesembled the Rssler attractor. We filtered out all but the

Kutta integration routing20]. The component ok andb central peak in the transmitted signal spectfifig. 3(@)] by

[16] were chosen by a numerical minimization routine tobandstop filtering the signal from the R@sler drive circuit

make the largest Lyapunov exponent for the response systeghd subtracting from the unfiltered signal. We found that this

less than zero. arrangement was more stable for our circuits than a band-
Figure Xa) shows the power spectrum of the sigoafor  pass filter.

the Lorenz system. Figurgt) shows the power spectrum of  Qur drive circuit vector field was described lojk, /dt

the signalg, (the filtered version ofu), for a center fre- = —(0.05¢;+0.5¢,+X3), dx,/dt=—y(—x;—0.11x,),

quency f;=5.44. The components ok and b were k;  anddxs/dt=—y[x3+h(x1)], whereh(x)=0 if x<3 and

=273.0212,k,=23.265 57,k3=16.247 05,0, =18.936 43,  h(x)=15(x—3) if x>3. The time factory was 10 s ..

b,=20.519 21, andbz=—3.043 97. For these parameters, The filter G was described by

the largest Lyapunov exponent for the response system was

—4.95. Figure 2 shows the synchronization of the response dg; 1\/ 39, B B d?u
system to the drive system. We found that with the above 4 = | R/l 112 792 152 Y  11a RC a2
dg, 1
dt _RrcI
£ gr=u+ge, 3
=
g where the narrow-band output signal was. The filter Q
s was given by @+1)/3, and the filter gain was-8/(1
+a). The Q factor was set to 7¢=20) and the gain to
—1(B=1+a). The filter center frequenchy. (the frequency

at which the bandstop output was zeveas 1/(2rRC). We
t (arb. units) set the center frequency to coincide with the main frequency
peak in the spectrum of the signafrom the circuit, at 1145
FIG. 2. The solid line shows the drive Lorenz system, while theHz. Figure 3a) shows the unfiltered power spectrum wf
dotted line shows the response Lorenz system synchronizing to th&hile Fig. 3b) is the power spectrum of the filtered signal
drive. g¢. We transmitted the signg; to the response circuit.
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[22,23 have stated that one gets the optimal average of any
101 smooth function of a system state by averaging over a low-
period orbit, so if the averages over several low-period orbits
of the Lyapunov exponents transverse to the synchronization
5 - manifold are negative, we should see synchronization
[24,25. For the piecewise linear Reler circuit, all of the
low-period unstable orbits have a large spectral component
0 at the main peak in the Reler spectrum, so if we filter at
this peak frequency, we can stabilize all of the low-period
orbits at once.

The periodic orbits for the Lorenz system contain many
different frequencies. Although the global Lyapunov expo-
nents for the Lorenz response system above are always nega-
tive, the local Lyapunov exponents are sometimes negative
-104 and sometimes positive. We are able to make the average
Lyapunov exponent negative because we are stabilizing one

u' (V)

10 ° ° ° 10 or more low-period orbits, which dominate the average. We
u (V) added 1% random noise to the Lorenz simulation and saw no
evidence of bursting away from synchronizati@4,25.
FIG. 4. Unfiltered signali’ from the response Rsler circuit vs Using a narrow-band signal to synchronize broadband
unfiltered signal from the drive Resler circuit. systems has some obvious advantages for applications in

communications. Reduced bandwidth means that the trans-
mitted signal will suffer less distortion. Filtering the trans-
mitted signal at the receiver will remove much of the noise
The response circuit was piecewise linear, so we wergicked up in transmission. One could even synchronize mul-
able to estimate the stability of the response circuit by find+iple response systems to the same chaotic signal filtered at
ing a Jacobian for the caggx)=0. This Jacobian was con- different frequencies. By comparing the different response
stant, so we used the largest real part of the eigenvalues gf/stems, one might be able to reduce the effects of
the Jacobian as an estimate of the stability of the respondeequency-dependent noise.
circuit. We varied the components fandb to find a stable Adding filters to synchronized chaotic systems does bring
response system. some loss of stability, so the filtered systems will take longer
The response circuit was stable fey=—1.9, k,=1.1, to synchronize and will be less robust to noise that is not
ka=1,b;=1, b,=1, andby=1. The largest real part of the filtered out. One may understand this loss of stability by
eigenvalues for the response circuit wad170. Figure 4 considering the filtering as a convolution of a time series
showsv from the response circuit wusfrom the drive circuit,  with some filter function. The narrower the pass band of the
showing synchronization. filter, the longer the time will be in which the filter averages
One might ask why a narrow-band filter passes enouglthe incoming signal. Long-time averages mean that the filter
information to synchronize a response circuit. We may di-cannot respond quickly to changes in the incoming signal, so
vide the chaotic motion into motion on a synchronizationthe response system is less stable. Rulki@} has described
manifold (where the systems are synchronizetid motion  an alternate method that avoids this stability problem by de-
transverse to the synchronization manifold. Hunt and Otsigning narrow-band chaotic systems.
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