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Synchronizing broadband chaotic systems to narrow-band signals

T. L. Carroll and G. A. Johnson
Code 6343, U.S. Naval Research Laboratory, Washington, D.C. 20375

~Received 9 July 1997!

We show that it is possible to take a signal from a chaotic drive system, pass it through a bandpass filter, and
still use it to synchronize a chaotic response system. Narrow-band chaotic signals should be less sensitive to
channel distortion and noise, so filtering should be useful for chaotic communications schemes.
@S1063-651X~98!05002-8#

PACS number~s!: 05.45.1b
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The application of synchronized chaotic systems to co
munications has become a popular research topic@1–8#. Un-
fortunately, the broadband properties that make chaotic
nals interesting also make the signals difficult to use
communications schemes. When real signals are transm
through some medium~the channel!, the properties of the
medium usually vary with frequency. Broad-band signa
such as chaos, are greatly distorted by transmission throu
real channel.

There has been some work on how to adapt chaotic
ceivers to correct for distortion due to transmission throug
channel@9–12#. As an alternate approach, we ask how mu
information about the chaotic drive system is necessary
order to synchronize the receiver. One may be able to av
some of the channel distortion problems by sending only
necessary information. We see in the work presented h
that one may reduce the amount of information about
chaotic drive system by filtering the drive signal through
bandpass filter and still synchronize the response system
do not need the full chaotic signal to synchronize the
sponse system.

We have shown before that one may synchronize a c
otic response system to a signal that is a nonlinear func
of signals in the chaotic drive system@13# or even a filtered
version of a signal from the drive system@14,15# ~when the
chaotic systems were nonautonomous!. Penget al. @16# have
shown a linear version of the result in Ref.@13#; one may
synchronize a chaotic response system to a linear comb
tion of signals from the drive system.

In this paper, we will look at drive-response systems
the form

dx

dt
5F~x!,

u5k•x,
dg

dt
5G~g,u!,

dx8

dt
5F~x8!1b~gi2g8 i !,

u85k•x8,
dg8

dt
5G~g8,u8!,

~1!

wherex is the drive system state vector,x8 is the response
system state vector,k and b are constant vectors,u is a
scalar,G is a dynamical system, andgi is a signal taken from
the dynamical systemG. We make a linear combinationu of
signals from the drive systemF(x) and drive the dynamica
systemG with u. We then take a signal fromG, such asgi ,
and transmit it to the response system. We set up the
571063-651X/98/57~2!/1555~4!/$15.00
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sponse system in the same way, then multiply the differe
(gi82gi) by the vectorb and add it to the response vect
field. We find that if the response system~including G! has
all Lyapunov exponents less than zero, the response will s
chronize to the drive. In this work, we use bandpass filt
for the dynamical systemG, although other dynamical sys
tems may work. A bandpass filter passes only a certain b
of frequencies from the input signal.

In previous work@14,15#, we synchronized circuits wher
the dynamical systemF(x) was a nonautonomous~periodi-
cally forced! system and the dynamical systemG contained
bandstop filters that removed the forcing frequency and
first several harmonics. The response system had its
periodic forcing source which replaced the part of the sig
filtered out byG.

When we used filters with nonautonomous chaotic c
cuits, we were removing only a small amount of informati
about the chaotic drive system. We had a copy of the forc
function at our response system, so all that was lost w
information on the phase of the forcing signal. In the pres
work, we will use bandpass filters with autonomous chao
systems. We are now removing a large amount of inform
tion about the chaotic drive system. Causal filters~such as
our bandpass filters! also change the dynamics of a sign
@17#. There should be some minimum amount of informati
needed to synchronize a response system to a drive sys

As a numerical example, we link two Lorenz systems@18#
through a bandpass filter. For our Lorenz example, the ve
field F was given bydxI /dt516(x22x1), dx2 /dt52x1x3
145.92x12x2 , anddx3 /dt5x1x224x3 . The scalaru was
u5k1x11k2x21k3x3 . The filterG was described by

dg1

dt
52

2

R1C
g12S 1

2R2CD S 1

R3C
2

1

R1CDg22S 1

R1CD du

dt
,

dg2

dt
5g1 . ~2!

At the response system, we took the difference (g28
2g2), multiplied by a vectorb5(b1 ,b2 ,b3) and added the
result to the response vector field.

Equation ~2! represents a second-order bandpass fi
@19#. The center frequencyf c is passed with a gain of 1
while other frequencies are attenuated by an amount
increases as they become farther fromf c . The constants
1555
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wereC51, R153.183, andR256.366.R3 was used to vary
the center frequency of the filter, so for a center frequenc
f c , R35R1 /@2114(p f c)

2R1R2#. For these parameters
the Q factor of the filter was 20~the Q factor is the center
frequency f c divided by the bandwidth!. The center fre-
quency f c of the filter was varied between 0.1 and 10. N
merical integration was carried out by a fourth-order Run
Kutta integration routine@20#. The component ofk and b
@16# were chosen by a numerical minimization routine
make the largest Lyapunov exponent for the response sy
less than zero.

Figure 1~a! shows the power spectrum of the signalu for
the Lorenz system. Figure 1~b! shows the power spectrum o
the signalg2 ~the filtered version ofu!, for a center fre-
quency f c55.44. The components ofk and b were k1
5273.0212,k2523.265 57,k3516.247 05,b1518.936 43,
b2520.519 21, andb3523.043 97. For these parameter
the largest Lyapunov exponent for the response system
24.95. Figure 2 shows the synchronization of the respo
system to the drive system. We found that with the abo

FIG. 1. ~a! Power spectrumS for the unfiltered signalu from the
numerical Lorenz system.~b! Power spectrumS for the filtered
signalg2 from the numerical Lorenz system.

FIG. 2. The solid line shows the drive Lorenz system, while
dotted line shows the response Lorenz system synchronizing to
drive.
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parameters, the response system was stable for values of c ,
ranging from about 1 to about 9.

We also built a set of electronic circuits that could
synchronized through a filter. Our drive and response circ
were piecewise linear circuits@21# whose attractors re
sembled the Ro¨ssler attractor. We filtered out all but th
central peak in the transmitted signal spectrum@Fig. 3~a!# by
bandstop filtering the signalu from the Rössler drive circuit
and subtracting from the unfiltered signal. We found that t
arrangement was more stable for our circuits than a ba
pass filter.

Our drive circuit vector field was described bydx1 /dt
52g(0.05x110.5x21x3), dx2 /dt52g(2x120.11x2),
and dx3 /dt52g@x31h(x1)#, whereh(x)50 if x<3 and
h(x)515(x23) if x.3. The time factorg was 104 s21.

The filter G was described by

dg1

dt
52S 1

RCD S 3g1

11a
1g21

b

11a
uD2

b

11a
RC

d2u

dt2
,

dg2

dt
5

1

RC
g1 ,

gf5u1g2 , ~3!

where the narrow-band output signal wasgf . The filter Q
was given by (a11)/3, and the filter gain was2b/(1
1a). The Q factor was set to 7(a520) and the gain to
21(b511a). The filter center frequencyf c ~the frequency
at which the bandstop output was zero! was 1/(2pRC). We
set the center frequency to coincide with the main freque
peak in the spectrum of the signalu from the circuit, at 1145
Hz. Figure 3~a! shows the unfiltered power spectrum ofu,
while Fig. 3~b! is the power spectrum of the filtered sign
gf . We transmitted the signalgf to the response circuit.

he

FIG. 3. ~a! Power spectrumS for the unfiltered signalu from the
piecewise linear Ro¨ssler circuit.~b! Power spectrumS for the fil-
tered signalgf from the piecewise linear Ro¨ssler circuit. Frequen-
cies outside the pass band have been reduced by 15–20 dB~a factor
of 30–100! in power
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The response circuit was piecewise linear, so we w
able to estimate the stability of the response circuit by fi
ing a Jacobian for the caseg(x)50. This Jacobian was con
stant, so we used the largest real part of the eigenvalue
the Jacobian as an estimate of the stability of the respo
circuit. We varied the components ofk andb to find a stable
response system.

The response circuit was stable fork1521.9, k251.1,
k351, b151, b251, andb351. The largest real part of th
eigenvalues for the response circuit was21170. Figure 4
showsv from the response circuit vsu from the drive circuit,
showing synchronization.

One might ask why a narrow-band filter passes eno
information to synchronize a response circuit. We may
vide the chaotic motion into motion on a synchronizati
manifold ~where the systems are synchronized! and motion
transverse to the synchronization manifold. Hunt and

FIG. 4. Unfiltered signalu8 from the response Ro¨ssler circuit vs
unfiltered signalu from the drive Ro¨ssler circuit.
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@22,23# have stated that one gets the optimal average of
smooth function of a system state by averaging over a lo
period orbit, so if the averages over several low-period orb
of the Lyapunov exponents transverse to the synchroniza
manifold are negative, we should see synchronizat
@24,25#. For the piecewise linear Ro¨ssler circuit, all of the
low-period unstable orbits have a large spectral compon
at the main peak in the Ro¨ssler spectrum, so if we filter a
this peak frequency, we can stabilize all of the low-peri
orbits at once.

The periodic orbits for the Lorenz system contain ma
different frequencies. Although the global Lyapunov exp
nents for the Lorenz response system above are always n
tive, the local Lyapunov exponents are sometimes nega
and sometimes positive. We are able to make the ave
Lyapunov exponent negative because we are stabilizing
or more low-period orbits, which dominate the average. W
added 1% random noise to the Lorenz simulation and saw
evidence of bursting away from synchronization@24,25#.

Using a narrow-band signal to synchronize broadba
systems has some obvious advantages for application
communications. Reduced bandwidth means that the tr
mitted signal will suffer less distortion. Filtering the tran
mitted signal at the receiver will remove much of the no
picked up in transmission. One could even synchronize m
tiple response systems to the same chaotic signal filtere
different frequencies. By comparing the different respon
systems, one might be able to reduce the effects
frequency-dependent noise.

Adding filters to synchronized chaotic systems does br
some loss of stability, so the filtered systems will take long
to synchronize and will be less robust to noise that is
filtered out. One may understand this loss of stability
considering the filtering as a convolution of a time ser
with some filter function. The narrower the pass band of
filter, the longer the time will be in which the filter average
the incoming signal. Long-time averages mean that the fi
cannot respond quickly to changes in the incoming signal
the response system is less stable. Rulkov@12# has described
an alternate method that avoids this stability problem by
signing narrow-band chaotic systems.
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